Do invasive plants structure microbial communities to accelerate decomposition in intermountain grasslands?

نویسندگان

  • Michael R McTee
  • Ylva Lekberg
  • Dan Mummey
  • Alexii Rummel
  • Philip W Ramsey
چکیده

Invasive plants are often associated with greater productivity and soil nutrient availabilities, but whether invasive plants with dissimilar traits change decomposer communities and decomposition rates in consistent ways is little known. We compared decomposition rates and the fungal and bacterial communities associated with the litter of three problematic invaders in intermountain grasslands; cheatgrass (Bromus tectorum), spotted knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula), as well as the native bluebunch wheatgrass (Pseudoroegneria spicata). Shoot and root litter from each plant was placed in cheatgrass, spotted knapweed, and leafy spurge invasions as well as remnant native communities in a fully reciprocal design for 6 months to see whether decomposer communities were species-specific, and whether litter decomposed fastest when placed in a community composed of its own species (referred to hereafter as home-field advantage-HFA). Overall, litter from the two invasive forbs, spotted knapweed and leafy spurge, decomposed faster than the native and invasive grasses, regardless of the plant community of incubation. Thus, we found no evidence of HFA. T-RFLP profiles indicated that both fungal and bacterial communities differed between roots and shoots and among plant species, and that fungal communities also differed among plant community types. Synthesis. These results show that litter from three common invaders to intermountain grasslands decomposes at different rates and cultures microbial communities that are species-specific, widespread, and persistent through the dramatic shifts in plant communities associated with invasions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of inorganic nitrogen uptake dynamics following snowmelt and at peak biomass in subalpine grasslands

Subalpine grasslands are highly seasonal environments and likely subject to strong variability in nitrogen (N) dynamics. Plants and microbes typically compete for N acquisition during the growing season and particularly at plant peak biomass. During snowmelt, plants could potentially benefit from a decrease in competition by microbes, leading to greater plant N uptake associated with active gro...

متن کامل

Invasive Plants and Wildlife Habitat Invasive Plants and Wildlife Habitat Non-Native Plants and Wildlife in the Intermountain West

Non-native plant invasions can change communities and ecosystems by altering the structure and composition of native vegetation. Changes in native plant communities caused by non-native plants can influence native wildlife species in diverse ways, but the outcomes and underlying mechanisms are poorly understood. Here, we review and synthesize current information for the Intermountain West of th...

متن کامل

Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion.

Belowground interactions between herbaceous native species and nonnative species is a poorly understood but emerging area of interest to invasive-species researchers. Positive feedback dynamics are commonly observed in many invaded systems and have been suspected in California grasslands, where native plants associate strongly with soil mutualists such as arbuscular mycorrhizal fungi. In respon...

متن کامل

The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants

Plants in terrestrial systems have evolved in direct association with microbes functioning as both agonists and antagonists of plant fitness and adaptability. As such, investigations that segregate plants and microbes provide only a limited scope of the biotic interactions that dictate plant community structure and composition in natural systems. Invasive plants provide an excellent working mod...

متن کامل

Associations between an Invasive Plant (Taeniatherum caput-medusae, Medusahead) and Soil Microbial Communities

Understanding plant-microbe relationships can be important for developing management strategies for invasive plants, particularly when these relationships interact with underlying variables, such as habitat type and seedbank density, to mediate control efforts. In a field study located in California, USA, we investigated how soil microbial communities differ across the invasion front of Taeniat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017